大家好今天介绍代数式的分类有哪些,以下是小编对初中数学代数式的分类的归纳整理,来看看吧。
代数式的分类
代数式的分类
1、有理式:有理式包括整式和分式。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。
(1)整式,①单项式:没有加减运算的整式叫做单项式。②多项式:几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。
(2)分式,一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A/B就叫做分式,其中A称为分子,B称为分母。分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。
2、无理式:我们把含有字母的根式、字母的非整数次乘方,或者是带有非代数运算的式子叫做无理式。我们把可以化为被开方式为有理式,根指数不带字母的代数式称为根式。
代数式的概念和分类
代数式是一种常见的解析式,对变数字母仅限于有限次代数运算,如加、减、乘、除、乘方、开方的解析式都称为代数式,单独的一个数或字母也称为代数式。
代数式的类别
1.有理式:有理式包括整式和分式。这种代数式中对干字母只进行有限次加、减、乘、除和整数次乘方这些运算。
(1)整式
①单项式:没有加减运算的整式叫做单项式。
②多项式:几个单项式的代数和叫做多项式:多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。
(2)分式
2.无理式:我们把含有字母的根式、字母的非整数次乘方,或者是带有非代数运算的式子叫做无非整数次乘方,或者是带有非代数运算的式子叫做无理式。我们把可以化为被开方式为有理式,根指数不带字母的代数式称为根式。
代数式有哪些类型 最好有例题
1.整式代数式(如:ax、by+c,a、b、c为已知数);
2.分式代数式(如:2x\\3);
3.根式代数式(如;根号2x)
什么是代数式啥是整式
代数式是由数和表示数的字母经有限次加、减、乘、除等代数运算所得的式子,或含有字母的数学表达式。
整式在有理式中可以包含加,减,乘,除、乘方五种运算,整式中除数不能含有字母。在复数范围内,代数式分为有理式和根式,有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。
这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。整式有包括单项式(数字或字母的乘积,或者是单独的一个数字或字母)和多项式(若干个单项式的和)。
代数式的分类:
1、单项式:没有加减运算的整式叫做单项式。
(1)单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数。
(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式:几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。
(1)多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。齐次多项式:各项次数相同的多项式叫做齐次多项式。
(2)不可约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称为有理数范围内不可约多项式。实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。
(3)对称多项式:在多元多项式中,如果任意两个元互相交换所得的结果都和原式相同,则称此多项式是关于这些元的对称多项式。
(4)同类项:多项式中含有相同的字母,并且相同字母的指数也分别相同的项叫做同类项。
代数式的分类
单独的一个数或一个字母叫做单项式.如4x,vt,6a^2,a^3,-n等等.
几个单项式的和叫做多项式.如t-5,3x+5y+2z...等等.
有理式包含:整式和分式.而整式包含单项式与多项式.
分式和无理式都不属於整式.
有理式与无理式统称代数式.
代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式
单项式(monomial):
1.任意个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。
2.一个字母或数字也叫单项式。
3.分母中不含字母(单项式是整式,而不是分式)
多项式:若干个单项式的和组成的式子叫做多项式
去括号:1.括号前面有\"+\"号,把括号和它前面的\"+\"号去掉,括号里各项的符号不改变
2.括号前面是\"-\"号,把括号和它前面的\"-\"号去掉,括号里各项的符号都要改变成相反
以上就是小编对于代数式的分类有哪些 初中数学代数式的分类问题和相关问题的解答了,希望对你有用