大家好今天介绍等边三角形的面积公式是什么,以下是小编对等边三角形面积公式是什么?的归纳整理,来看看吧。
等边三角形面积公式是什么
等边三角形面积公式为:
S=(√3)a²/4,(S是三角形的面积,a是三角形的边长)。
1、三角形面积公式为:S=(1/2)ah (S是三角形的面积,a是三角形的一条边,h是这条边上的高)
2、正三角形,三条边相等,三条边上的高也对应相等,边长为a,高为h,则h=(√3)a/2
所以可推导出正三角形的面积S=(1/2)ah=(√3)a²/4。
三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形,符号为△。
常见的三角形按边分有等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
等边三角形的面积 公式是什么
如果等边三角形的边长为a 那么它的高为√a/2
所以等边三角形的面积公式:
等边三角形与圆的有关计算公式:
高:;
内切圆半径:;
外接圆半径:
;;表示内切圆面积,;表示外接圆面积。
由此可知等边三角形外接圆面积是内切圆面积的4倍。
在全等证明题目中往往把等边三角形作为背景图形,在解题时我们要善于运用等边三角形的特殊性来达到证明全等的目的。如下例题:
已知:△ABC中,∠A=60°,且AB+AC=a,
求证:当三角形的周长最短时,三角形是等边三角形。
证明:要使三角形的周长最短,只要使BC最短。
AC=a-AB
根据余弦定理有:
BC²=AB²+AC²-2AB*AC*cosA;
BC²=AB²+AC²-AB*AC=AB²+(a-AB)²-AB*(a-AB)=3AB²-3a*AB+a²=3(AB-a/2)²+a2/4;
所以当AB=a/2=AC时BC最小,为a/2;
这时,周长为AB+AC+BC=a+BC=a+a/2=3a/2最短。
等边三角形的面积怎么计算
等边三角形面积公式为:
S=(√3)a²/4,(S是三角形的面积,a是三角形的边长)
1、三角形面积公式为:S=(1/2)ah (S是三角形的面积,a是三角形的一条边,h是这条边上的高)
2、正三角形,三条边相等,三条边上的高也对应相等,边长为a,高为h,则h=(√3)a/2
所以可推导出正三角形的面积S=(1/2)ah=(√3)a²/4
等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
等边三角形的面积公式
等边三角形面积公式为:
S=(√3)a²/4,(S是三角形的面积,a是三角形的边长)
1、三角形面积公式为:S=(1/2)ah (S是三角形的面积,a是三角形的一条边,h是这条边上的高)
2、正三角形,三条边相等,三条边上的高也对应相等,边长为a,高为h,则h=(√3)a/2
所以可推导出正三角形的面积S=(1/2)ah=(√3)a²/4
等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
等边三角形判定方法
(1)三边相等的三角形是等边三角形(定义)。
(2)三个内角都相等的三角形是等边三角形。
(3)有一个内角是60度的等腰三角形是等边三角形。
(4) 两个内角为60度的三角形是等边三角形。
说明:可首先考虑判断三角形是等腰三角形。
提示:
【1】三个判定定理的前提不同,判定(1)和(2)是在三角形的条件下,判定(3)是在等腰三角形的条件下。
【2】判定(3)告诉我们,在等腰三角形中,只要有一个角是60度,不论这个角是顶角还是底角,这个三角形就是等边三角形。
等边三角形的面积怎么算
如果等边三角形的边长为a 那么它的高为√a/2
所以等边三角形的面积公式:
等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
等边三角形相关公式:
边长公式:;
面积公式:。
等边三角形与圆的有关计算公式:
高:;
内切圆半径:;
外接圆半径:;;表示内切圆面积,;表示外接圆面积。
由此可知等边三角形外接圆面积是内切圆面积的4倍。
判定方法:
(1)三边相等的三角形是等边三角形(定义)。
(2)三个内角都相等的三角形是等边三角形。
(3)有一个内角是60度的等腰三角形是等边三角形。
(4) 两个内角为60度的三角形是等边三角形。
来源:——等边三角形
以上就是小编对于等边三角形的面积公式是什么 等边三角形面积公式是什么?问题和相关问题的解答了,希望对你有用