大家好今天介绍二次函数顶点坐标怎么算,以下是小编对二次函数的顶点坐标怎么算出来的归纳整理,来看看吧。
二次函数的顶点坐标怎么算
在二次函数的图像上顶点式:y=a(x-h)²+k抛物线的顶点P(h,k)【同时,直线x=h为此二次函数的对称轴】顶点坐标:对于二次函数y=ax²+bx+c(a≠0)其顶点坐标为 [-b/2a,(4ac-b²)/4a]。
扩展资料
公式
1、y=ax²+bx+c (a≠0)
2、y=ax²(a≠0)
3、y=ax²+c (a≠0)
4、y=a(x-h)²(a≠0)
5、y=a(x-h)²+k (a≠0)←顶点式
6、y=a(x+h)²+k
7、y=a(x-x₁)(x-x₂) (a≠0)←交点式
8、【-b/2a,(4ac-b²)/4a】(a≠0,k为常数,x≠h)
来源:-顶点坐标
二次函数顶点坐标怎样求
二次函数的一般式是y=ax^2+bx+c,当a>0时开口向上,函数有最小值.当a<0时开口向下,则函数有最大值。而顶点坐标就是(-b/2a,4ac-b^2/4a)这个就是把a、b、c分别代入进去,求得顶点的坐标.4ac-b^2/4a就是最值。
函数图象
对称关系
对于一般式:
1、y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称
2、y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称
3、y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称
4、y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)
对于顶点式:
1、y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h, k)和(-h, k)关于y轴对称,横坐标相反、纵坐标相同。
2、y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h, k)和(h, -k)关于x轴对称,横坐标相同、纵坐标相反。
3、y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h, k)和(h, k)相同,开口方向相反。
4、y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h, k)和(-h, -k)关于原点对称,横坐标、纵坐标都相反。(其实1、3、4就是对f(x)来说f(-x),-f(x),-f(-x)的情况)。
来源:-二次函数
怎样求二次函数的顶点坐标
二次函数的一般式是y=ax^2+bx+c,当a>0时开口向上,函数有最小值.当a<0时开口向下,则函数有最大值。而顶点坐标就是(-b/2a,4ac-b^2/4a)这个就是把a、b、c分别代入进去,求得顶点的坐标.4ac-b^2/4a就是最值。
函数图象
对称关系
对于一般式:
1、y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称
2、y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称
3、y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称
4、y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)
对于顶点式:
1、y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h, k)和(-h, k)关于y轴对称,横坐标相反、纵坐标相同。
2、y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h, k)和(h, -k)关于x轴对称,横坐标相同、纵坐标相反。
3、y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h, k)和(h, k)相同,开口方向相反。
4、y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h, k)和(-h, -k)关于原点对称,横坐标、纵坐标都相反。(其实1、3、4就是对f(x)来说f(-x),-f(x),-f(-x)的情况)。
来源:-二次函数
二次函数顶点坐标公式是什么
二次函数顶点坐标公式是y=a(x-h)^2+k k(a≠0,a、h、k为常数)。接下来让我们看一下具体知识点。
二次函数顶点坐标公式及推导过程
二次函数的顶点式:y=a(x-h)^2+k k(a≠0,a、h、k为常数),顶点坐标为(h,k)
推导过程:
y=ax^2+bx+c
y=a(x^2+bx/a+c/a)
y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)
y=a(x+b/2a)^2+c-b^2/4a
y=a(x+b/2a)^2+(4ac-b^2)/4a
对称轴x=-b/2a
顶点坐标(-b/2a,(4ac-b^2)/4a)
二次函数的其他表达式
1.一般式
y=ax2+bx+c(a,b,c为常数,a=?0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)
2.交点式
函数图像与x轴交于 和 两点。
a,b,c为常数,a≠0,且a决定函数的开口方向。
3.两根式
y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即ax2+bx+c=0的两个根,a=0.
二次函数的性质
1.二次函数的图像是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形。对称轴为直线x=-b/2a
2.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。a越大,则抛物线的开口越小;a越小,则抛物线的开口越大。
3.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。
二次函数顶点坐标公式是什么
二次函数顶点坐标公式是(-b/2a,(4ac-b^2)/4a),下面就和我一起了解一下吧,供大家参考。
二次函数顶点坐标公式
对于二次函数y=ax^2+bx+c,
其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线],
其中x1,2=-b±√b^2-4ac,
顶点式:y=a(x-h)^2+k,
[抛物线的顶点P(h,k)],
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0),
注:在3种形式的互相转化中,有如下关系:h=-b/2a=(x₁+x₂)/2k=(4ac-b^2)/4a与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a。
二次函数顶点坐标公式推导过程
y=ax^2+bx+cy=a(x^2+bx/a+c/a)y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)y=a(x+b/2a)^2+c-b^2/4ay=a(x+b/2a)^2+(4ac-b^2)/4a,
对称轴x=-b/2a,
顶点坐标(-b/2a,(4ac-b^2)/4a)。
用待定系数法求二次函数的解析式:
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0)。
以上就是小编对于二次函数顶点坐标怎么算 二次函数的顶点坐标怎么算出来问题和相关问题的解答了,希望对你有用
二次函数顶点坐标怎么算