三角形全等的判定定理是什么(三角形全等判定定理有哪几个?)

文章 2年前 (2022) 飞天叮当猫
175 0 0

大家好今天介绍三角形全等的判定定理是什么,以下是小编对三角形全等判定定理有哪几个?的归纳整理,来看看吧。

三角形全等的判定定理是什么(三角形全等判定定理有哪几个?)

三角形全等的判定定理有几个

三角形全等的判定定理有5个。

1、三边对应相等的三角形是全等三角形。SSS(边边边)

2、两边及其夹角对应相等的三角形是全等三角形。SAS(边角边)

3、两角及其夹边对应相等的三角形全等。ASA(角边角)

4、两角及其一角的对边对应相等的三角形全等。AAS(角角边)

5、在一对直角三角形中,斜边及另一条直角边相等。RHS(直角、斜边、边)

三角形全等顺口溜:全等三角形,性质要搞清。对应边相等,对应角也同。角边角,边角边,边边边,角角边,四个定理要记全。

三角形判定法一:

1、锐角三角形:三角形的三个内角都小于90度。

2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。

3、钝角三角形:三角形的三个内角中有一个角大于90度。

三角形判定法二:

1、锐角三角形:三角形的三个内角中最大角小于90度。

2、直角三角形:三角形的三个内角中最大角等于90度。

3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。

全等三角形判定定理是什么

定义
  能够完全重合(大小,形状都相等的三角形)的两个三角形称为全等三角形。   当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。   (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。   (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。   (3)有公共边的,公共边一定是对应边。   (4)有公共角的,角一定是对应角。   (5)有对顶角的,对顶角一定是对应角。 全等三角形的变幻规律

编辑本段判定定理
  1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。    2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。   3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。   4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)   5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)   SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。   注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,属于SSA),这两种情况都不能唯一确定三角形的形状。   A是英文角的缩写(angle),S是英文边的缩写(side)。   H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。   6.三条中线(或高、角平分线)分别对应相等的两个三角形全等。
编辑本段性质
  三角形全等的性质:    1.全等三角形的对应角相等。   2.全等三角形的对应边相等   3.全等三角形的对应顶点位置相等。   4.全等三角形的对应边上的高对应相等。   5.全等三角形的对应角的角平分线相等。   6.全等三角形的对应边上的中线相等。   7.全等三角形面积相等。   8.全等三角形周长相等。   9.全等三角形可以完全重合。
编辑本段推论
  要验证全等三角形,不需验证所有边及所有角也对应地相同。以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:   S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。   S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。   A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。   A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。   H.L.(hypotenuse -right-angle side ) (斜边、直角边):直角三角形中一条斜边和一条直角边都对应相等,该两个三角形就是全等。

全等三角形的判定定理

1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。 
  
2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
  
3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
  
4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
  
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
  SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
  
注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,属于SSA),这两种情况都不能唯一确定三角形的形状。
  
A是英文角的缩写(angle),S是英文边的缩写(side)。
  
H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。
  
6.三条中线(或高、角平分线)分别对应相等的两个三角形全等。

三角形全等的判定定理是什么

三组对应边分别相等的两个三角形全等、有两边及其夹角对应相等的两个三角形全等、有两角及其夹边对应相等的两个三角形全等、有两角及其一角的对边对应相等的两个三角形全等、斜边及一直角边对应相等的两个直角三角形全等。

判定定理

1.三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。

4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)。

全等三角形的性质

1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3.能够完全重合的顶点叫对应顶点。

4.全等三角形的对应边上的高对应相等。

5.全等三角形的对应角的角平分线相等。

6.全等三角形的对应边上的中线相等。

7.全等三角形面积和周长相等。

8.全等三角形的对应角的三角函数值相等。

证明三角形全等的题步骤

1.读题,明确题中的已知和求证。

2.要观察待证的线段或角,在哪两个可能全等的三角形中。

3.分析要证两个三角形全等,已有什么条件,还缺什么条件。

4.有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角。

5.先证明缺少的条件,再证明两个三角形全等。

三角形全等的判定方法是什么

1、边边边(SSS)

有三边对应相等的两个三角形全等。它用于证明两个三角形全等。该定理最早由欧几里得证明。

2、边角边(SAS)

各三角形的其中两条边的长度都对应相等,且这两条边的夹角(即这两条边组成的角)都对应相等的话,该两个三角形就是全等三角形。

3、角边角(ASA):

两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。角边角是三角形全等的判定方法之一,需要注意的是角边角中的边必须是两个角公共的一条边(一个角是由两条边组成的,三角形中的任意两个角都有一条公共边)。

4、角角边(AAS)

角边角是指两个角和这两个角的公共边,角边角定理可以推出全等。角角边是指两个角和另外一个非公共边,角角边也可以推出全等。

5、直角边(HL):

HL定理是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边对应相等来证明两个三角形全等。

全等三角形的性质

1、全等三角形的对应角相等。

2、全等三角形的对应边相等。

3、能够完全重合的顶点叫对应顶点。

4、全等三角形的对应边上的高对应相等。

以上就是小编对于三角形全等的判定定理是什么 三角形全等判定定理有哪几个?问题和相关问题的解答了,希望对你有用

三角形全等的判定定理是什么

版权声明:飞天叮当猫 发表于 2022年10月1日 下午5:45。
转载请注明:三角形全等的判定定理是什么(三角形全等判定定理有哪几个?) | 吾爱导航

相关文章

暂无评论

暂无评论...
如果您觉得本站有用! 可以按Ctrl+D收藏,或设置成浏览器主页。
登陆账号,开启永久个人书签收藏同步和便签功能。